Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(3): 1822-1831, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439623

RESUMO

This study assesses the potential impact of drought on arsenic exposure from private domestic wells by using a previously developed statistical model that predicts the probability of elevated arsenic concentrations (>10 µg per liter) in water from domestic wells located in the conterminous United States (CONUS). The application of the model to simulate drought conditions used systematically reduced precipitation and recharge values. The drought conditions resulted in higher probabilities of elevated arsenic throughout most of the CONUS. While the increase in the probability of elevated arsenic was generally less than 10% at any one location, when considered over the entire CONUS, the increase has considerable public health implications. The population exposed to elevated arsenic from domestic wells was estimated to increase from approximately 2.7 million to 4.1 million people during drought. The model was also run using total annual precipitation and groundwater recharge values from the year 2012 when drought existed over a large extent of the CONUS. This simulation provided a method for comparing the duration of drought to changes in the predicted probability of high arsenic in domestic wells. These results suggest that the probability of exposure to arsenic concentrations greater than 10 µg per liter increases with increasing duration of drought. These findings indicate that drought has a potentially adverse impact on the arsenic hazard from domestic wells throughout the CONUS.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Secas , Monitoramento Ambiental , Humanos , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água
2.
Glob Chang Biol ; 26(4): 2251-2269, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957148

RESUMO

Land-use and climate change are significantly affecting stream ecosystems, yet understanding of their long-term impacts is hindered by the few studies that have simultaneously investigated their interaction and high variability among future projections. We modeled possible effects of a suite of 2030, 2060, and 2090 land-use and climate scenarios on the condition of 70,772 small streams in the Chesapeake Bay watershed, United States. The Chesapeake Basin-wide Index of Biotic Integrity, a benthic macroinvertebrate multimetric index, was used to represent stream condition. Land-use scenarios included four Special Report on Emissions Scenarios (A1B, A2, B1, and B2) representing a range of potential landscape futures. Future climate scenarios included quartiles of future climate changes from downscaled Coupled Model Intercomparison Project - Phase 5 (CMIP5) and a watershed-wide uniform scenario (Lynch2016). We employed random forests analysis to model individual and combined effects of land-use and climate change on stream conditions. Individual scenarios suggest that by 2090, watershed-wide conditions may exhibit anywhere from large degradations (e.g., scenarios A1B, A2, and the CMIP5 25th percentile) to small degradations (e.g., scenarios B1, B2, and Lynch2016). Combined land-use and climate change scenarios highlighted their interaction and predicted, by 2090, watershed-wide degradation in 16.2% (A2 CMIP5 25th percentile) to 1.0% (B2 Lynch2016) of stream kilometers. A goal for the Chesapeake Bay watershed is to restore 10% of stream kilometers over a 2008 baseline; our results suggest meeting and sustaining this goal until 2090 may require improvement in 11.0%-26.2% of stream kilometers, dependent on land-use and climate scenario. These results highlight inherent variability among scenarios and the resultant uncertainty of predicted conditions, which reinforces the need to incorporate multiple scenarios of both land-use (e.g., development, agriculture, etc.) and climate change in future studies to encapsulate the range of potential future conditions.

3.
New Phytol ; 225(2): 693-712, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514239

RESUMO

Globally, spring phenology and abiotic processes are shifting earlier with warming. Differences in the magnitudes of these shifts may decouple the timing of plant resource requirements from resource availability. In riparian forests across the northern hemisphere, warming could decouple seed release from snowmelt peak streamflow, thus reducing moisture and safe sites for dominant tree recruitment. We combined field observations with climate, hydrology, and phenology models to simulate future change in synchrony of seed release and snowmelt peaks in the South Platte River Basin, Colorado, for three Salicaceae species that dominate western USA riparian forests. Chilling requirements for overcoming winter endodormancy were strongest in Salix exigua, moderately supported for Populus deltoides, and indiscernible in Salix amygdaloides. Ensemble mean projected warming of 3.5°C shifted snowmelt peaks 10-19 d earlier relative to S. exigua and P. deltoides seed release, because decreased winter chilling combined with increased spring forcing limited change in their phenology. By contrast, warming shifted both snowmelt peaks and S. amygdaloides seed release 21 d earlier, maintaining their synchrony. Decoupling of snowmelt from seed release for Salicaceae with strong chilling requirements is likely to reduce resources critical for recruitment of these foundational riparian forests, although the magnitude of future decoupling remains uncertain.


Assuntos
Mudança Climática , Rios , Sementes/fisiologia , Neve , Clima , Geografia , Modelos Lineares , Modelos Biológicos , Populus/fisiologia , Salix/fisiologia , Estações do Ano , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...